搜索热: 3D打印
扫一扫 加微信
316L奥氏体不锈钢表面低温气体渗碳层的热稳定性能
          
Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel

摘    要
对表面低温气体渗碳强化处理的316L奥氏体不锈钢进行300~400 ℃保温150,1 500,3 000 h时效处理,研究了时效温度及时间对表面渗碳层物相组成、厚度、纳米硬度和残余应力的影响,分析了其热稳定性能。结果表明:渗碳层在温度300~400 ℃的时效过程中无新型碳化物析出;在400 ℃时效时,碳原子向基体内部扩散,渗碳层厚度明显增加,当时效时间为3 000 h时,渗碳层与基体的界面消失,表面纳米硬度降至基体的50%;当在300 ℃时效时,渗碳层厚度、碳含量以及纳米硬度均没有明显变化,此温度下服役时渗碳层较为稳定;经300~400 ℃时效处理后,渗碳层的表面残余压应力均下降,且时效温度越高、时效时间越长,残余压应力下降的幅度越大。
标    签 316L奥氏体不锈钢   低温气体渗碳   碳扩散   时效   热稳定性能   316L austenitic stainless steel   low temperature gaseous carburization   carbon diffusion   aging   thermal stability  
 
Abstract
316L austenitic stainless steel was surface enhanced by low temperature gaseous carburization, and then aged at 300-400 ℃ for 150, 1 500, 3 000 h, respectively. The effects of aging temperature and time on phase composition, thickness, nano-hardness and residual stress of the carburized surface layer were investigated. The thermal stability was analyzed. The results show that no new carbides precipitated in the carburized layer during aging at 300-400 ℃. When aged at 400 ℃, carbon atoms diffused into the substrate, leading to an obvious thickness increase of the carburized layer. The interface between the carburized layer and the substrate disappeared, and the surface nano-hardness decreased to 50% that of substrate after aging at 400 ℃ for 3 000 h. When aged at 300 ℃, the thickness, carbon content and nano-hardness of the carburized layer changed little; the carburized layer was relatively stable during working at 300 ℃. After aging at 300-400 ℃, the surface residual compressive stress of the carburized layer decreased, and the decreasing amplitude was larger at a higher aging temperature or for a longer aging time.

中图分类号 TG156   DOI 10.11973/jxgccl201903002

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51475224);江苏省高校自然科学研究重大项目(14KJA470002);江苏省普通高校学术学位研究生科研创新计划项目(KYZZ16_0234);江苏高校品牌专业建设工程项目(PPZY2015A022)

收稿日期 2018/1/31

修改稿日期 2019/1/15

网络出版日期

作者单位点击查看

备注孙宁(1991-),男,山东枣庄人,硕士研究生

引用该论文: SUN Ning,JIANG Yong,CHEN Jinyan,PENG Yawei,GONG Jianming. Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel[J]. Materials for mechancial engineering, 2019, 43(3): 7~12
孙宁,姜勇,陈金燕,彭亚伟,巩建鸣. 316L奥氏体不锈钢表面低温气体渗碳层的热稳定性能[J]. 机械工程材料, 2019, 43(3): 7~12


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】SOUZA R M, IGNAT M, PINEDO C E, et al. Structure and properties of low temperature plasma carburized austenitic stainless steels[J]. Surface and Coatings Technology, 2009, 204(6/7):1102-1105.
 
【2】梁磊, 赵阳, 刘世宏, 等. 凝汽器材料的耐磨蚀性能及电化学性能[J]. 腐蚀与防护, 2015, 36(8):717-720.
 
【3】姜海一, 张雅琴, 贾国栋, 等. 奥氏体不锈钢制容器失效典型案例分析[C]//2006年全国失效分析与安全生产高级研讨会论文集. 北京:中国机械工程学会, 2006.
 
【4】韩栋, 刘道新, 刘树涛. 汽轮机低压转子2Cr13不锈钢叶片断裂分析[J]. 机械工程材料, 2007, 31(7):45-48.
 
【5】陈星, 姜涛, 陶春虎,等. 液压泵柱塞弹簧断裂失效分析[J]. 机械工程材料, 2009, 33(11):86-89.
 
【6】KOLSTER B H. Development of a stainless and wear-resistant steel[J]. Materialen, 1987, 8:1-12.
 
【7】ERNST F, CAO Y, MICHAL G M. Carbides in low-temperature-carburized stainless steels[J]. Acta Materialia, 2004, 52(6):1469-1477.
 
【8】LIU W J, BRIMACOMBE J K, HAWBOLT E B. Influence of composition on the diffusivity of carbon in steels:I. Non-alloyed austenite[J]. Acta Metallurgica et Materialia, 1991, 39(10):2373-2380.
 
【9】CAO Y, ERNST F, MICHAL G M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia, 2003, 51(14):4171-4181.
 
【10】SATOMI N, KANAYAMA N, WATANABE Y, et al. Effects of heat treatment conditions on formation of expanded-austenite phase in austenitic stainless steels by combining active screen and DC plasma carburizing processes[J]. Materials Transactions, 2017, 58(8):1181-1189.
 
【11】CHRISTIANSEN T L, STÅHL K, BRINK B K, et al. On the carbon solubility in expanded austenite and formation of Hägg carbide in AISI 316 stainless steel[J]. Steel Research International, 2016, 87(11):1395-1405.
 
【12】ICHⅡ K, FUJIMURA K, TAKASE T. Structure of the ion-nitrided layer of 18-8 stainless steel[J]. Technology Reports of Kansai University, 1986, 27:135-144.
 
【13】LEWIS D B, LEYLAND A, STEVENSON P R, et al. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels[J]. Surface and Coatings Technology, 1993, 60(1/2/3):416-423.
 
【14】O'DONNELL L J, MICHAL G M, ERNST F, et al. Wear maps for low temperature carburised 316L austenitic stainless steel sliding against alumina[J]. Surface Engineering, 2010, 26(4):284-292.
 
【15】CESCHINI L, CHIAVARI C, LANZONI E, et al. Low-temperature carburised AISI 316L austenitic stainless steel:Wear and corrosion behaviour[J]. Materials & Design, 2012, 38:154-160.
 
【16】SUN Y, CHIN L Y. Residual stress evolution and relaxation in carbon S phase layers on AISI 316 austenitic stainless steel[J]. Surface Engineering, 2002, 18(6):443-446.
 
【17】MICHAL G M, ERNST F, KAHN H, et al. Carbon supersaturation due to paraequilibrium carburization:Stainless steels with greatly improved mechanical properties[J]. Acta Materialia, 2006, 54(6):1597-1606.
 
【18】AGARWAL N, KAHN H, AVISHAI A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization[J]. Acta Materialia, 2007, 55(16):5572-5580.
 
【19】SUN Y. Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions[J]. Corrosion Science, 2010, 52(8):2661-2670.
 
【20】TSUJIKAWA M, YOSHIDA D, YAMAUCHI N, et al. Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding[J]. Surface and Coatings Technology, 2005, 200(1):507-511.
 
【21】MARTIN F J, LEMIEUX E, NEWBAUER T, et al. Localized corrosion resistance of LTCSS-carburized materials to seawater immersion[J]. ECS Transactions, 2007, 3(31):613-621.
 
【22】BUHAGIAR J, SPITERI A, SACCO M, et al. Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising[J]. Corrosion Science, 2012, 59:169-178.
 
【23】MARTINAVI ACČG IUS A, ABRASONIS G, SCHEINOST A C, et al. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J]. Acta Materialia, 2012, 60(10):4065-4076.
 
【24】LI X Y, THAIWATTHANA S, DONG H, et al. Thermal stability of carbon S phase in 316 stainless steel[J]. Surface Engineering, 2002, 18(6):448-451.
 
【25】ROTUNDO F, CESCHINI L, MARTINI C, et al. High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316L austenitic stainless steel[J]. Surface and Coatings Technology, 2014, 258:772-781.
 
【26】WANG J, LI Z, WANG D, et al. Thermal stability of low-temperature carburized austenitic stainless steel[J]. Acta Materialia, 2017, 128:235-240.
 
【27】姜勇, 孙宁, 李洋, 等. 316L奥氏体不锈钢低温超饱和气体渗碳层热稳定性研究[J]. 热加工工艺, 已接收.
 
【28】荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015, 51(12):1516-1522.
 
【29】CHRISTIANSEN T, SOMERS M A J. Characterisation of low temperature surface hardened stainless steel[J]. Struers Journal of Materialography, 2006, 9(9):2-17.
 
【30】ERNST F, CAO Y, MICHAL G M, et al. Carbide precipitation in austenitic stainless steel carburized at low temperature[J]. Acta Materialia, 2007, 55(6):1895-1906.
 
【31】姜勇.奥氏体不锈钢低温气体渗碳表面强化性能及在新能源中应用的研究[D].南京:南京工业大学,2017.
 
【32】THAIWATTHANA S, LI X Y, DONG H, et al. Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J]. Surface Engineering, 2002, 18(6):433-437.
 
相关信息
   标题 相关频次
 预应变对304奥氏体不锈钢低温气体渗碳的影响
 8
 高温载荷作用下20G钢的性能及显微组织演变
 6
 650 ℃等温时效过程中P92钢沉淀相的转变规律
 5
 P92钢中Laves相在时效过程中的形成及粗化规律
 5
 10号钢U型换热管的泄漏原因
 4
 奥氏体不锈钢低温表面渗碳技术的研究进展
 4
 醋酸回收罐进口管泄漏原因
 4
 低温气体渗碳对形变304L不锈钢抗点蚀性能的影响
 4
 煤制气装置变换气分离器浮阀的失效分析
 4
 时效时间对20Cr32Ni1Nb钢显微组织与力学性能的影响
 4
 未使用316L不锈钢输送管线的失效分析
 4
 0Cr18Ni9/20G钢异质焊接接头的耐硫化氢应力腐蚀开裂性能
 3
 H2S环境中液化石油气球罐用16MnR钢的腐蚀特性
 3
 PTA装置干燥机换热管的失效原因
 3
 采用修正θ投影法预测Cr25Ni35Nb炉管钢的蠕变性能
 3
 长期服役后铂重整反应器的高温损伤及剩余寿命
 3
 等温时效模拟研究12Cr1MoV钢在长期高温服役过程中碳化物的转变规律
 3
 电化学充氢前后304L奥氏体不锈钢的塑性对比
 3
 高温碱液浓度与温度及应变速率对316L不锈钢应力腐蚀开裂的影响
 3
 锅炉水冷壁下联箱定排管泄漏的原因
 3
 国产和进口P92耐热钢显微组织、拉伸和蠕变性能的对比
 3
 基于修正θ投影法的炉管用Cr25Ni35Nb钢蠕变寿命预测
 3
 加热炉管爆管失效分析
 3
 精对苯二甲酸生产装置中TA2螺柱的断裂原因
 3
 冷加工变形对1Cr18Ni9Ti不锈钢在含溴醋酸溶液中耐腐蚀性能的影响
 3
 敏化对304L不锈钢在高温NaOH溶液中应力腐蚀开裂的影响
 3
 某热电厂20G钢锅炉水冷壁管鼓包的原因
 3
 浓度和温度对316L不锈钢在NaOH溶液中应力强激光与粒子束腐蚀开裂行为的影响
 3
 氢对304L奥氏体不锈钢力学性能的影响
 3
 塑性预变形对316L奥氏体不锈钢氢脆的影响
 3